Upper Estimates in Direct Inequalities for Bernstein-Type Operators

نویسندگان

  • José A. Adell
  • Carmen Sangüesa
چکیده

We obtain explicit upper estimates in direct inequalities with respect to the usual sup-norm distance for Bernstein-type operators. Our approach combines analytical and probabilistic techniques based on representations of the operators in terms of stochastic processes. We illustrate our results by considering some classical families of operators, such as Weierstrass, Sza sz, and Bernstein operators. 2001 Academic

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Bernstein Type Inequalities for Complex Polynomial

In this paper, we establish some Bernstein type inequalities for the complex polynomial. Our results constitute generalizations and refinements of some well-known polynomial inequalities.

متن کامل

On the approximation by Chlodowsky type generalization of (p,q)-Bernstein operators

In the present article, we introduce Chlodowsky variant of $(p,q)$-Bernstein operators and compute the moments for these operators which are used in proving our main results. Further, we study some approximation properties of these new operators, which include the rate of convergence using usual modulus of continuity and also the rate of convergence when the function $f$ belongs to the class Li...

متن کامل

K-functionals and multivariate Bernstein polynomials

This paper estimates upper and lower bounds for the approximation rates of iterated Boolean sums of multivariate Bernstein polynomials. Both direct and inverse inequalities for the approximation rate are established in terms of a certain K -functional. From these estimates, one can also determine the class of functions yielding optimal approximations to the iterated Boolean sums. c © 2008 Elsev...

متن کامل

Essential norm of generalized composition operators from weighted Dirichlet or Bloch type spaces to Q_K type spaces

In this paper we obtain lower and upper estimates for the essential norms of generalized composition operators from weighted Dirichlet spaces or Bloch type spaces to $Q_K$ type spaces.

متن کامل

Pointwise approximation by a Durrmeyer variant of Bernstein-Stancu operators

In the present paper, we introduce a kind of Durrmeyer variant of Bernstein-Stancu operators, and we obtain the direct and converse results of approximation by the operators.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of Approximation Theory

دوره 109  شماره 

صفحات  -

تاریخ انتشار 2001